
Journal of Geometry and Physics 55 (2005) 50–74

New strings for old Veneziano amplitudes
I. Analytical treatment
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Abstract

The bosonic string theory evolved as an attempt to find a physical/quantum mechanical model
capable of reproducing Euler’s beta function (Veneziano amplitude) and its multidimensional ana-
logue. The multidimensional analogue of beta function was studied mathematically for some time
from different angles by mathematicians such as Selberg, Weil and Deligne, among many others. The
results of their studies apparently were not taken into account in physics literature on string theory.
In a recent publication [IJMPA 19 (2004) 1655] an attempt was made to restore the missing links.
The results of this publication are incomplete, however, since no attempts were made at reproduction
of known spectra of both open an closed bosonic strings or at restoration of the underlying model(s)
reproducing such spectra. Nevertheless, as discussed in this publication the existing mathematical
interpretation of the multidimensional analogue of Euler’s beta function as one of the periods associ-
ated with the corresponding differential form “living” on the Fermat-type (hyper)surfaces, happens to
be crucial for restoration of the quantum/statistical mechanical model reproducing such generalized
beta function. Unlike the traditional formulations, this model is supersymmetric. Details leading to
restoration of this model will be presented in the forthcoming Parts 2–4 of our work. They are de-
voted, respectively, to the group-theoretic, symplectic and combinatorial treatments of this model. In
this paper the discussion is restricted mainly to the study of analytical properties of the multiparticle
Veneziano and Veneziano-like (tachyon-free) amplitudes. In the last case, we demonstrate that the
Veneziano-like amplitudes alone (with parameters adjusted accordingly) are capable of reproducing
known spectra of both open and closed bosonic strings. The choice of parameters is subject to some
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constraints dictated by the mathematical interpretation of these amplitudes as periods of Fermat-type
(hyper)surfaces considered as complex manifolds of Hodge-type.
© 2004 Elsevier B.V. All rights reserved.
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1. Brief review of the Veneziano amplitudes

In 1968 Veneziano[1] postulated the 4-particle scattering amplitudeA(s, t, u) given (up
to a common constant factor) by

A(s, t, u) = V (s, t) + V (s, u) + V (t, u), (1.1)

where

V (s, t) =
∫ 1

0
x−α(s)−1(1 − x)−α(t)−1 dx ≡ B(−α(s),−α(t)) (1.2)

is Euler’s beta function andα(x) is the Regge trajectory usually written asα(x) = α(0) + α′x
with α(0) andα′ being the Regge slope and the intercept, respectively. In the case of space–
time metric with signature{−,+,+,+}, the Mandelstam variabless, t andu entering the
Regge trajectory are defined by[2]

s = −(p1 + p2)2, t = −(p2 + p3)2, u = −(p3 + p1)2. (1.3)

The 4-momentapi are constrained by the energy–momentum conservation law leading to
relation between the Mandelstam variables:

s + t + u =
4∑

i=1

m2
i . (1.4)

Veneziano[1] noticed1 that to fit experimental data the Regge trajectories should obey the
constraint

α(s) + α(t) + α(u) = −1 (1.5)

consistent with Eq.(1.4) in view of definition ofα(s).

Remark 1.1. The Veneziano condition, Eq.(1.5), can be rewritten in a more general form.
Indeed, letm, n, lbe some integers such thatα(s)m + α(t)n + α(u)l = 0, then by adding this

1 To get our Eq.(1.5) from Eq. (7) of Veneziano paper, it is sufficient to notice that his 1− α(s) corresponds to
ours−α(s).
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equation to Eq.(1.5)we obtain,α(s)m̃ + α(t)ñ + α(u)l̃ = −1, or, more generally,α(s)m̃ +
α(t)ñ + α(u)l̃ + k̃ · 1 = 0. Both equations have been studied extensively in the book by
Stanley[3] and play a major role in developments to be presented in this work and in Parts
2–4, which follow.

Veneziano noticed that with the help of the constraint, Eq.(1.5), the amplitudeA(s, t, u)
can be equivalently written as follows:

A(s, t, u) = Γ (−α(s))Γ (−α(t))Γ (−α(u))[sinπ(−α(s)) + sinπ(−α(t))

+ sinπ(−α(u))]. (1.6)

The Veneziano amplitude looks strikingly similar to that suggested a bit later by Virasoro
[4]. The latter (up to a constant) is given by

Ā(s, t, u) = Γ (a)Γ (b)Γ (c)

Γ (a + b)Γ (b + c)Γ (c + a)
(1.7)

with parametersa = −1
2α(s), etc. also subjected to the constraint:

1
2(α(s) + α(t) + α(u)) = −1. (1.8)

Use of the formulas

Γ (x)Γ (1 − x) = π

sinπx
(1.9a)

and

4 sinx siny sinz = sin(x + y − z) + sin(y + z − x) + sin(z + x − y)

− sin(x + y + z) (1.9b)

permits us to rewrite Eq.(1.7) in the alternative form (up to an unimportant constant):

Ā(s, t, u) = [Γ (−1
2α(s))Γ (−1

2α(t))Γ (−1
2α(u))]2[sinπ(−1

2α(s)) + sinπ(−1
2α(t))

+ sinπ(−1
2α(u))]. (1.10)

Although these two amplitudes look deceptively similar, mathematically, they are markedly
different. Indeed, by using Eq.(1.6)conveniently rewritten as

A(a, b, c) = Γ (a)Γ (b)Γ (c)[sinπa + sinπb + sinπc] (1.11)

and exploiting the identity

cos
πz

2
= πz

21−z

1

Γ (z)

ζ(1 − z)

ζ(z)
,

after some trigonometric calculations the following result is obtained:

A(a, b, c) = ζ(1 − a)

ζ(a)

ζ(1 − b)

ζ(b)

ζ(1 − c)

ζ(c)
, (1.12)
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provided that

a + b + c = 1. (1.13)

For the Virasoro amplitude, apparently, no result like Eq.(1.12)can be obtained. As the
rest of this paper demonstrates, the differences between the Veneziano and the Virasoro
amplitudes are much more profound. The result, Eq.(1.12), is also remarkable in the sense
that it allows us to interpret the Veneziano amplitude from the point of view of number
theory, the theory of dynamical systems, etc. Details can be found in our recent work[5].
No such interpretation is possible to our knowledge for the Virasoro amplitudes. For this
and other reasons to be described below in this paper, we shall consider only the Veneziano
and Veneziano-like amplitudes.

In particular, now we would like to discuss some basic analytic properties of the 4-particle
Veneziano amplitude. To this purpose we need to use the following identities:

sinπz = πz

∞∏
k=1

(
1 −

( z
k

))(
1 +

( z
k

))
(1.14)

and

1

Γ (z)
= ze−Cz

∞∏
k=1

(
1 +

( z
k

))
e−z/k (1.15)

with C being the Euler’s constant

C = lim
n→∞

(
1 + 1

2
+ 1

3
+ · · · + 1

n
− ln n

)
.

When combined with the Veneziano condition,α(s) + α(t) + α(u) = −1, Eq. (1.5), the
above results allow us to write (up to a constant factor) a typical singular portion of the
Veneziano amplitude (the tachyons are to be considered separately):

A(s, t, u) = 1

nlm
(

1 − α(s)
n

) 1(
1 − α(t)

m

) 1(
1 − α(u)

l

)

×
[(

1 − α(s)

n

)
C(n) +

(
1 − α(t)

m

)
C(m) +

(
1 − α(u)

l

)
C(l)

]
,

(1.16)

whereC(n), etc. are known constants andm, n, l are some non-negative integers. For actual
use of this result the explicit form of these constants may be important. Looking at Eq.(1.14)
we obtain,

C(n, α) = πα
1(

1 − α
n

) ∞∏
k=1

(
1 −

(α
k

))(
1 +

(α
k

))
, (1.17)
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whereα can beα(s), etc. Clearly, this definition leads to further simplifications, e.g. to the
manifestly symmetric form:

A(s, t, u) = 1

nlm


 C(n, α(s))(

1 − α(t)
m

) 1(
1 − α(u)

l

) + C(m,α(t))(
1 − α(s)

n

) 1(
1 − α(u)

l

)

+ C(l, α(u))(
1 − α(s)

n

) 1(
1 − α(t)

m

)

 . (1.18a)

Consider now a special case:α(s) = α(t) = n. In this case we obtain

A(s = t, u) = 1

n2m

1(
1 − α(s)

n

)2


C(l, α(u)) + 2C(n, α(s))

(
1 − α(s)

n

)
(

1 − α(u)
l

)



= 1

n2m

1(
1 − α(s)

n

)2 [sinπα(u) + 2 sinπα(s)]
1(

1 − α(u)
l

) = 0 (1.18b)

This result is in accordance with that of Ref.[6], where it was obtained differently. The
tachyonic case is rather easy to consider now. Indeed, using Eqs.(1.6), (1.14) and (1.15)
and taking into account the Veneziano condition, let us assume that, say,α(s) = 0. Then,
in view of symmetry of Eqs.(1.18a) and (1.18b), we need to letα(t) = 0 as well to check
if Eq. (1.18b)holds. This leaves us with the option:α(u) = −1. With such a constraint we
obtain (sinceΓ (1) = 1),

A(s, t, u) = π

α(t)
+ π

α(s)
− π

α(t)
− π

α(s)
= 0,

as required. Hence, indeed, even in the tachyonic case, Eq.(1.18b)holds in accordance with
earlier results[6]. This means that one cannot observe tachyons in both channels simultane-
ously. But even to observe them in one channel is unphysical. Moreover, Eq.(1.18b)implies
that only situations for whichα(s) 
= α(t) 
= α(u) can be in principle physically observable.

By combining the Veneziano condition with such a constraint leaves us with the following
options:

(a) α(s), α(t) > 0, α(u) < 0;
(b) α(s) > 0, α(t), α(u) < 0 plus the rest of cyclically permuted inequalities.

This means that not only tachyons of the typeα(s) = 0 (orα(t) = 0, orα(u) = 0) could
be present but also those for which, for example,α(s) < 0. This is so because, according to
known results for standard open string theory[2] in 26 space–time dimensions,α(s) = 1 +
1
2s. Whenα(s) = 0, such convention produces the only one tachyon:s = −2 = M2, and the
whole spectrum (open string) is given byM2 = −2,0,2, . . . ,2n, wheren is a non-negative
integer. Incidentally, for the closed bosonic string under the same conditions the spectrum is
known to beM2 = −8,0,8, . . . ,8n. No other masses are permitted. The requirements like
those in (a) and (b) produce additional complications however. For instance, letα(s) = 1
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and consider the following option:α(t) = 3, so that we should haveα(u) = −5. This leads
us to the tachyon mass:M2 = −12. It is absent in the spectrum of both types of bosonic
strings. The emerging apparent difficulty can actually be bypassed somehow due to the
following chain of arguments.

Remark 1.2. Consider, for example, the amplitudeV (s, t) and let boths and t be non-
tachyonic and, of course,α(s) 
= α(t). Then, naturally,α(u) < 0 is tachyonic. But, when we
use Eq.(1.18a), we notice at once that this creates no difficulty since theα < 0 condition
simply will eliminate the resonance in the respective channels. E.g. ifV (s, t) will have poles
for bothsandt then the same particle resonances will occurin V (s, u) andV (t, u) channels
so that,except the caseα(s) = 0 leading to the pole with massM2 = −2, no other tachyonic
states will show up as resonances and, hence, they cannot be observed. This argument is
important for designing of the bosonic string model but is in apparent violation of the
Veneziano condition, Eq.(1.5). It is violated if the tachyons of larger negative mass arenot
present in the spectrum. Since the Veneziano condition is caused by the energy–momentum
conservation, it cannot be readily replaced by something else. The arguments just presented
explain in part the inadequacy of the existing formulation of the model reproducing the
Veneziano amplitudes.

At the same time, irrespective to the hypothetical model one uses for reproduction of
these amplitudes, based on the arguments just presented it should be clear that,effectively,
we have only two possibilities for resonances to be observed. That is experimentally (in view
of the Veneziano condition) we can either observe the resonances for combinationsVu(s) or
Vu(t). Clearly,Vu(s) = V (s, t) + V (s, u) andVu(t) = V (t, s) + V (t, u). Such a conclusion
is valid only if we requireV (s, t) = V (t, s), etc. It is surely the case for the Veneziano
amplitude, Eq.(1.18a). Accordingly, should the Veneziano amplitude be free of tachyons
(e.g.α(s) = 0), it would be perfectly acceptable. In the light of the results just obtained it
can be effectively written as

A(s, t, u) = Vu(s) + Vu(t). (1.19)

The result, Eq.(1.19), survives when, instead of the Veneziano, the tachyon-free Veneziano-
like amplitudes are used. These are discussed inSection 3. Mathematical arguments leading
to the construction of models associated with such amplitudes are discussed in detail in Parts
2–4 of this work.

To complete this section, we would like to provide a brief preview of arguments leading
to reconstruction of these models. Clearly, such a preview is only a small part of other
arguments to be discussed. We believe, that the arguments presented below should be
especially appealing to readers familiar with string theory.

Following Hirzebruch and Zagier[7] let us consider an identity

1

(1 − tz0) · · · (1 − tzk)
= (1 + tz0 + (tz0)2 + · · ·) · · · (1 + tzn + (tzn)2 + · · ·)

=
∞∑
n=0


 ∑

k0+···+kk=n

z
k0
0 · · · zkkk


 tn. (1.20)
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Whenz0 = · · · = zn = 1, the inner sum in the last expression provides the total number
of monomials of the typezk0

0 · · · zknn with k0 + · · · + kk = n. The total number of such
monomials is given by the binomial coefficient[8]

p(k, n) ≡
(
n + k

k

)
= (n + 1)(n + 2) · · · (n + k)

k!
. (1.21)

For this special case Eq.(1.20)is converted to a useful expansion,

P(k, t) ≡ 1

(1 − t)k+1 =
∞∑
n=0

p(k, n)tn. (1.22)

In view of the integral representation of the beta function given by Eq.(1.2), we replace
k + 1 byα(s) + 1 in Eq.(1.22)and use it in the beta function representation ofV (s, t) given
by Eq. (1.2). Straightforward calculation produces the following result known in string
theory[2]:

V (s, t) = −
∞∑
n=0

p(α(s), n)
1

α(t) − n
. (1.23)

The r.h.s. of Eq.(1.23)can be interpreted as the Laplace transform of the partition function,
Eq. (1.22). Such an interpretation is not merely formal. To see this, following Vergne
[9], let us consider a region∆k of Rk consisting of all pointsν = (t1, t2, . . . , tk), such
that coordinatesti of ν are non-negative and satisfy the constraint:t1 + t2 + · · · + tk ≤ 1.
Clearly, such a restriction is characteristic for the simplex inRk. Consider now adilated
simplex:n∆k for some non-negative integern. The volume ofn∆k is easily calculated and
is known to be

vol(n∆k) = nk

k!
. (1.24)

Next, let us consider pointsν = (u1, u2, . . . , uk) with integralcoordinatesinsidethe dilated
simplexn∆k. The total number of points with integral coordinates insiden∆k is given by
p(k, n), Eq.(1.21), i.e.

p(k, n) = |n∆k ∩ Zk| = (n + 1)(n + 2) · · · (n + k)

k!
. (1.25)

The functionp(k, n) happens to be the non-negative integer. It arises naturally as the di-
mension of the quantum Hilbert space associated (through the coadjoint orbit method)
with the symplectic manifold of dimension 2k constructed by “inflating”∆k. Although
the details related to such symplectic manifolds and the associated with them dynamical
systems will be provided in Parts 2 and 3, the next section supplies additional relevant
information.
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2. Relationship between the hypergeometric functions and the Veneziano
amplitudes

The fact that the hypergeometric functions are the simplest solutions of the Knizhnik–
Zamolodchikov equations of CFT is well documented[10]. The connection between these
functions and the toric varieties (to be discussed in Part 2) had been also developed in papers
by Gelfand, Kapranov and Zelevinsky (GKZ)[11]. Hence, we see no need in duplication of
their results in this work. Instead, we would like to discuss other aspects of hypergeometric
functions and their connections with the Veneziano amplitudes emphasizing similarities
and differences between strings and CFT.

For reader’s convenience, we begin by introducing some standard notations. In particular,
let

(a, n) = a(a + 1)(a + 2) · · · (a + n − 1)

and, more generally, (a) = (a1, . . . , ap) and (c) = (c1, . . . , cq). With help of these notations
the (p, q)-type hypergeometric function can be written as

pFq[(a); (c); x] =
∞∑
n=0

(a1, n) · · · (ap, n)

(c1, n) · · · (cq, n)

xn

n!
. (2.1)

In particular, the hypergeometric function in the form known to Gauss is just2F1 =
F [a, b; c; x]. Practically all elementary functions and almost all special functions can be
obtained as special cases of the hypergeometric function just defined[12].

We are interested in connections between the hypergeometric functions and the Schwarz–
Christoffel (S–C) mapping problem. The essence of this problem lies in finding a function
ϕ(ζ) = z which maps the upper half plane Imζ > 0 (or, equivalently, the unit circle) into
the exterior of then-sided polygon located on the Riemann sphere considered as one-
dimensional complex projective spaceCP1 (i.e. z ∈ CP1). Traditionally, the pre-images
a1, . . . , an of the polygon vertices located at pointsb1, . . . , bn in CP1 are placed onto
x-axis of ζ-plane so thatϕ(ai) = bi, i = 1 − n. Let the interior angles of the polygon be
πα1, . . . , παn, respectively. Then the exterior anglesµi are defined through relationsπαi +
πµi = π, i = 1 − n. The exterior angles are subject to the constraint:

∑n
i=1 µi = 2. The

above data allow us to write for the S–C mapping function the following known expression:

ϕ(ζ) = C

∫ ζ

0
(t − a1)−µ1 · · · (t − an)−µn + C′. (2.2)

If one of the points, sayan, is located at infinity, it can be shown that in the resulting formula
for mapping the last term under the integral can be deleted.

Consider now the simplest but relevant example of mapping of the upper half plane
into a triangle with anglesα, β andγ subject to Euclidean constraint:α + β + γ = 1. Let,
furthermore,a1 = 0, a2 = 1 anda3 = ∞. Using Eq.(2.2) (with C = 1) we obtain for the
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lengthc of the side of the triangle:

c =
∫ 1

0

∣∣∣∣dϕ(ζ)

dζ
dζ

∣∣∣∣ =
∫ 1

0
zα−1(1 − z)β−1 = B(α, β) = Γ (α)Γ (β)

Γ (1 − γ)
. (2.3)

Naturally, two other sides can be determined in the same way. Much more efficient is to use
the familiar elementary trigonometry relation

c

sinπγ
= b

sinπβ
= a

sinπα
.

Then, using Eq. (1.9a), we obtain for the sides the following results:c =
1
π

[sinπγ]Γ (α)Γ (β)Γ (γ); b = 1
π

[sinπβ]Γ (α)Γ (β)Γ (γ); a = 1
π

[sinπα]Γ (α)Γ (β)Γ (γ).
The perimeter lengthL = a + b + c of the triangle is just the full Veneziano amplitude,
Eq. (1.1). As is well known [13], the conformal mapping with Euclidean constraint
α + β + γ = 1 can be performed only for three sets offixedangles. Another four sets of
angles belong to the spherical case:α + β + γ > 1, while countable infinity of angle sets
exist for the hyperbolic case:α + β + γ < 1. Hence, the associated with such mappings
Fuchsian-type equations used in some formulations of string theory will not be helpful in
deriving the Veneziano amplitudes. These equations are useful however in the CFT as is
well known[10].

It is well documented that, to some extent, development of the bosonic string theory is
inseparable from attempts at multidimensional generalization of Euler’s beta function[6].
Analogous developments also took place in the theory of hypergeometric functions where
they proceeded along two related lines. To illustrate the key ideas, following Deligne and
Mostow[14], let us consider the standard hypergeometric function which, up to a constant,2

is given by

F [a, b; c; x]=̇
∫ ∞

1
ua−c(u − 1)c−b−1(u − x)−a du. (2.4)

The multidimensional (multivariable) analogue of the above function, according to Picard
(in notations of Deligne and Mostow), is given by

F [x2, . . . , xn+1] =
∫ ∞

1
u−µ0(u − 1)−µ1

n+1∏
i=2

(u − xi)
−µi du, (2.5)

provided thatx0 = 0, x1 = 1, and as before,
∑n

i=0 µi = 2. At the same time, using the
alternative representation ofF [a, b; c; x] given by

F [a, b; c; x]=̇
∫ 1

0
zb−1(1 − z)c−b−1(1 − zx)−a dz (2.6)

2 To indicate this we use symbol ˙=.
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one obtains as well the following multidimensional generalization:

F [α, β, β′, γ; x, y] =̇
∫∫

u≥0,v≥0
u+v≤1

uβ−1vβ
′−1(1 − u − v)γ−β−β′−1(1 − ux)−α

× (1 − vy)−α′
dudv. (2.7)

This result was obtained by Horn at the end of 19th century and was subsequently reana-
lyzed and extended by GKZ. Looking at the last expression one can design by analogy the
multidimensional extension of the Euler’s beta function. In view of Eq.(1.2), it is given by
the following integral attributed to Dirichlet:

D(x1, . . . , xk) =
∫∫

u1≥0,...,uk≥0
u1+···+uk≤1

u
x1−1
1 u

x2−1
2 · · · uxk−1

k (1 − u1 − · · · − uk)
xk+1−1

× du1 · · · duk. (2.8)

In this integral lett = u1 + · · · + uk. This allows us to use already familiar expansion,
Eq.(1.22). In addition, however, we would like to use the following identity:

tn = (u1 + · · · + uk)
n =

∑
n=(n1,...,nk)

n!

n1!n2! · · · nk! u
n1
1 · · · unkk (2.9)

with restrictionn = n1 + · · · + nk. This type of identity was used earlier in our work on
Kontsevich–Witten model[15]. Moreover, from the same paper we obtain the alternative
and very useful form of the above expansion

(u1 + · · · + uk)
n =

∑
λ�k

f λSλ(u1, . . . , uk), (2.10)

where the Schur polynomialSλ is defined by

Sλ(u1, . . . , uk) =
∑

n=(n1,...,nk)

Kλ,nu
n1
1 · · · unkk (2.11)

with coefficientsKλ,n known as Kostka numbers[16], fλ being the number of standard
Young tableaux of shapeλ and the notationλ � k meaning thatλ is a partition ofk. Through
such connection with Schur polynomials one can develop connections with Kadomtsev–
Petviashvili (KP) hierarchy of non-linear exactly integrable systems on one hand, and with
the theory of Schubert varieties on another[15]. We shall provide more details on such a
connection in Part 4. Additional striking similarities between the results of this paper and
those of the Kontsevich–Witten model will be discussed in Parts 2–4.

A(1, . . . k) = Γn1...nk (α(sk+1))

(α(s1) − n1) · · · (α(sk) − nk)
. (2.12)

Even though the residueΓn1...nk (α(sk+1)) contains all the combinatorial factors, the ob-
tained result should still be symmetrized (in accord with the 4-particle case considered by
Veneziano) in order to obtain the full multiparticle Veneziano amplitude. Since in such gen-
eral multiparticle case the same expansion, Eq.(1.22), was used, arguments of the previous
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section can be applied to the present case as well, thus leading to the same model considered
by Vergne[9]. Details will be discussed in Parts 2 and 3.

3. Veneziano amplitudes from Fermat hypersurfaces

3.1. General considerations

In 1967, a year earlier than Veneziano’s paper was published, the paper[17] by Chowla
and Selberg had appeared relating Euler’s beta function to the periods of elliptic integrals.
The result by Chowla and Selberg was generalized by Weil whose two influential papers
[18,19]have brought into picture the periods of Jacobians of the Abelian varieties, Hodge
rings, etc. Being motivated by these papers, Gross had written a paper[20] in which the
beta function appears as a period associated with the differential form “living” on the
Jacobian of the Fermat curve. His results as well as those by Rohrlich (placed in the ap-
pendix to Gross paper) have been subsequently documented in the book by Lang[21].
Although in the paper by Gross[20] the multidimensional extension of the beta func-
tion is briefly considered, e.g. read p. 207 of Ref.[20], the computational details were
not provided, however. We provide these details below following some ideas developed
in lecture notes by Deligne[22]. To obtain the multidimensional extension of the beta
function following logic of the paper by Gross, one needs to replace the Fermat curve by
the Fermat hypersurface, to embed it into the projective space and, by complexification,
to treat it as the K̈ahler manifold. The differential forms living on such a manifold are
associated with periods of Fermat hypersurface. In Parts 2 and 3 of this work we shall
argue that thus obtained Kähler manifold is of Hodge-type. We will also provide arguments
independent from those by Weil[18,19] needed to arrive at the same conclusions. In his
lecture notes Deligne noticed that the Hodge theory requires some essential changes (e.g.
mixed Hodge structures, etc.) if the Hodge–Kähler manifold possess singularities. Such
modifications may be needed upon development of the formalism we are about to dis-
cuss. A monograph by Carson et al.[23] contains an up to date exhaustive information
regarding such modifications, etc. Fortunately, to obtain the multiparticle Veneziano ampli-
tudes, such complications are not necessary. Hence we proceed directly with description of
main ideas.

To illustrate these ideas, in accordance with Ref.[23], we are following the arguments
by Griffiths [24]. To this purpose, let us begin with the simplest example of calculation of
the following period integral:

π(λ) =
∮
Γ

dz

z(z − λ)
(3.1)

taken along the closed contourΓ in the complexz-plane. Since this integral depends upon
parameterλ the periodπ(λ) is some function ofλ. It can be determined by straight-
forward differentiation ofπ(λ) with respect toλ thus leading to the desired differential
equation

λπ′(λ) + π(λ) = 0 (3.2)
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enabling us to calculateπ(λ). This simple result can be vastly generalized to cover the case
of period integrals of the type

Π(λ) =
∮
Γ

P(z1, . . . , zn)

Q(z1, . . . , zn)
dz1 ∧ dz2 · · · ∧ dzn. (3.3)

The equationQ(z1, . . . , zn) = 0 determines algebraic variety. It may contain a parameter
(or parameters)λ so that the polar locus of values ofz’s satisfying equationQ = 0 depends
upon this parameter(s). By analogy with Eq.(3.2), it is possible to obtain a set of differential
equations of P–F type. This was demonstrated originally by Manin[25]. In this work we
are not going to develop this line of research, however. Instead, following Griffiths[24],
we want to analyze in some detail the nature of the expression under the integral sign in
Eq.(3.3).

If x = (x0, . . . , xn) are homogenous coordinates of a point inprojective spaceandz =
(z1, . . . , zn) are the associated coordinates of the point in theaffine space, wherezi = xi

x0
,

then the rationaln-form ω is given in theaffinespace by

ω = P(z1, . . . , zn)

Q(z1, . . . , zn)
dz1 ∧ dz2 · · · ∧ dzn (3.4)

with rational functionP
Q

being a quotient of two homogenous polynomials of thesame
degree. Upon substitution:zi = xi

x0
, the form dz1 ∧ dz2 · · · ∧ dzn changes to

dz1 ∧ dz2 · · · ∧ dzn = (x0)−(n+1)
n∑

i=0

(−1)ixi dx0 ∧ · · · ∧ dx̂i ∧ · · · ∧ dxn,

where the hat on the top ofxi means that it is excluded from the product. It is convenient
now to define the formω0 via

ω0 :=
n∑

i=0

(−1)ixi dx0 ∧ · · · ∧ dx̂i ∧ · · · ∧ dxn

so that in terms ofprojective spacecoordinates the formω can be rewritten as

ω = p(x)
q(x)

ω0, (3.5)

where p(x) = P(x) and q(x) = Q(x)xn+1
0 , or in more symmetric form,q(x) =

Q(x)x0 · · · xn. In this case the degree of the denominator of the rational functionp
q

is
that of the numerator +(n + 1). This is the result of Corollary 2.11 of Griffiths paper[24].
Conversely, each homogenous differential formω in projective space can be written in affine
space upon substitution:x0 = 1 andxi = zi, i 
= 0.
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We would like to take advantage of this fact now. To this purpose, as an example, we would
like to study the period integrals associated with equation describing Fermat hypersurface
in complex projective space

F(N) : xN0 + · · · + xNn + xNn+1 = 0. (3.6)

We would like to consider the set of independent linear formsx
〈ci〉
i , i = 0 − (n + 1), where

〈ci〉 denotes representative ofci in Z such that for now 1≤ 〈ci〉 ≤ N − 1.3 They can be
interpreted as the set of hyperplanes inCn+1 whose complement is the complex algebraic
torusTas will be explained in detail in Parts 2 and 3. We want to consider the formω living
at the intersection ofTwith F. To this purpose it is convenient to introduce the average〈c〉
as follows:

〈c〉 = 1

N

∑
i

〈ci〉. (3.7)

The numbersci belong to the setX(S1) given by

X(S1) =
{
c̄ ∈

(
Z
NZ

)n+2

≡
(
Z
NZ

)
× · · · ×

(
Z
NZ

)∣∣∣∣∣ c̄
= (c0, . . . , cn+1),

∑
i

ci = 0 modN

}
. (3.8)

The true meaning of the condition
∑

i ci = 0 modN is illustrated below by using the Fermat
hypersurfaceF(N) as an example. In this case the formω, Eq.(3.5), is given by

ω = x
〈c0〉−1
0 · · · x〈cn+1〉−1

n+1

(xN0 + · · · + xNn + xNn+1)〈c〉
ω0. (3.9)

By design, it satisfies all of the requirements of Corollary 2.11 of Griffiths paper.

3.2. The 4-particle Veneziano-like amplitude

Using Eq.(3.9), let us consider the simplest but important case:n = 1. It is relevant for
calculation of 4-particle Veneziano-like amplitude. Convertingω into affine form according
to Griffiths prescription we obtain the following result for the period integral:

Iaff =
∮
Γ

1

xN1 + xN2 ∓ 1
dx〈c1〉

1 ∧ dx〈c2〉
2 . (3.10a)

The ± sign in the denominator requires some explanation. Indeed, let us for a moment
restore the projective form of this integral. By doing so, we obtain the following integral:

Iproj =
∮
Γ

z
〈c1〉
1 z

〈c2〉
2 z

〈c0〉
0

zN1 + zN2 ± zN0

(
dz1

z1
∧ dz2

z2
− dz0

z0
∧ dz2

z2
+ dz0

z0
∧ dz1

z1

)
. (3.10b)

3 These limits for〈ci〉 are in accordance with Gross[20, p. 198]. Subsequently, they will be changed below to
1 ≤ 〈ci〉 ≤ N.
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It is manifestly symmetric with respect to permutation of its arguments by construction. In
addition, we would like to be invariant with respect to scale transformations of the type:zj →
zjξ

j, whereξj = exp
(
±i 2πj

N

)
with 1 ≤ j ≤ N − 1. Such scaling is used extensively in the

theory of invariants of the pseudo-reflection groups. Its meaning will be discussed in Part 2
in connection with invariance properties of the Veneziano and Veneziano-like amplitudes.
For now, it is sufficient to realize only that the numerator of the integrand in Eq.(3.10b)

as a whole acquires the following phase factor: exp
{

i 2π
N

(〈c1〉j + 〈c2〉k + 〈c0〉l)
}

. Since

by design the integralIproj is made to satisfy Corollary 2.11 discussed in the previous
subsection, it is sufficient to require

〈c1〉j + 〈c2〉k + 〈c0〉l = N (3.11a)

in order to make it manifestly scale invariant (torus action invariant in the terminology of
Part 2). We shall call Eq.(3.11a)the “Veneziano condition” while Eq.(3.11b)we shall call
the “Shapiro–Virasoro” condition.4 Transition from the projective to affine space breaks
the permutational symmetry firstly because of selecting, say,z0 (and requiring it to be 1)
and, secondly, by possibly switching the sign in front ofz0. The permutational symmetry
can be restored in the style of Veneziano, e.g. see Eq.(1.1). The problem of switching the
sign in front ofz0 can be treated similarly but requires extra care. This is so because instead
of the factorξj used above we could have usedεj, whereε = exp

(±i π
N

)
5 Use of such a

factor makes the integralIproj also torus action invariant. But for this case the condition,
Eq.(3.11a), has to be changed into

〈c1〉j + 〈c2〉k + 〈c0〉l = 2N (3.11b)

in accordance with Lemma 1 of Gross[20]. By such a change we are in apparent disagree-
ment with Corollary 2.11 by Griffiths. We write “apparent” because, fortunately, there is a
way to reconcile Corollary 2.11 by Griffiths with Lemma 1 by Gross. It will be discussed
below. Already assuming that this is the case, we notice that there are at least two different
classes of transformations leavingIproj unchanged. When switching to the affine form these
two classes are not equivalent: the first leads to differential forms of the first kind while the
second to that of the second kind[20,21]. Both are living on the Jacobian varietyJ(N) as-
sociated with the Fermat surfaceF(N) : zN1 + zN2 ± 1 = 0. It happens that physically more
relevant are the forms of the second kind. We would like to describe them now.

We begin by noticing that in switching from the projective to affine space the following
set of 3N points (at infinity) should be deleted from the Fermat curvezN1 + zN2 + zN3 = 0.
These are: (εξj,0,1), (0, εξj,1), (ε2ξj, εξj,0), respectively[26]. By assuming that this is
the case and parameterizingz1 andz2 asz1 = εt

1/N
1 andz2 = εt

1/N
2 , we obtain the simplex

equationt1 + t2 = 1 as deformation retract forF(N).6 After this, Eq.(3.10a)acquires the

4 These names are given by analogy with the existing terminology for the open (Veneziano) and closed (Shapiro–
Virasoro) bosonic strings. Clearly, in the present context they emerge for reasons different from those used in
conventional formulations.

5 Both options will be explained in Part 2 from the point of view of the concept of the torus action. For alternative
point of view, please read Ref.[26].

6 The rationale for such substitutions is explained in Part 2.
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following form:

Iaff = ξj〈c1〉+k〈c2〉 1

N2

∮
Γ

ε〈c1〉t〈c1〉/N
1 ε〈c2〉t〈c2〉/N

2

t1 + t2 − 1

dt1
t1

∧ dt2
t2

. (3.12)

The overall phase factor guarantees the linear independence of the above period integrals
[21] in view of the well-known result: 1+ ξr + ξ2r + · · · + ξ(N−1)r = 0. It will be omitted
for brevity in the rest of our discussion.

To calculateIaff we need to use generalization of the method of residues for multidi-
mensional complex integrals as developed by Leray[27] and discussed in physical context
by Hwa and Teplitz[28] and others. From this reference we find that taking the residue can
be achieved either by dividing the differential form in Eq.(3.12)by ds = t1 dt1 + t2 dt2 or,
equivalently, by writing instead of Eq.(3.12)the following physically suggestive result:

Iaff = 1

N2

∮
Γ

ε〈c1〉t〈c1〉/N
1 ε〈c2〉t〈c2〉/N

2
dt1
t1

∧ dt2
t2

δ(t1 + t2 − 1) (3.13)

to be discussed further in Parts 2 and 3. For the time being, taking into account thatt2 =
1 − t1, after calculating the Leray residue we obtain

Iaff = 1

N2

∫ 1

0
u〈c1〉/N−1(1 − u)〈c2〉/N−1 du = 1

N2B(a, b), (3.14)

whereB(a, b) is Euler’s beta function (as in Eq.(1.2)) with a = 〈c1〉
N

andb = 〈c2〉
N

. The
phase factors had been temporarily suppressed for the sake of comparison with the results
of Rohrlich [20] (published as an appendix to the paper by Gross and also discussed in
the book by Lang[21]). To make such a comparison, we need to take into account the
multivaluedness of the integrand above if it is considered in the standard complex plane.
Referring our readers to Chapter 5 of Lang’s book[21] allows us to avoid rather long
discussion about the available choices of integration contours. Proceeding in complete
analogy with the case considered by Lang, we obtain the periodΩ(a, b) of the differential
form ωa,b of thesecondkind living onJ(N):

Ω(a, b)

N
= 1

N

∮
Γ

ωa,b = 1

N2 (1 − ε〈c1〉)(1 − ε〈c2〉)B(a, b). (3.15)

The JacobianJ(N) is related to the Fermat curveF(N) considered as the Riemann surface
of genusg = 1

2(N − 1)(N − 2). Obtained result differs from that by Rohrlich only by phase
factors:ε’s instead ofξ’s. The number of such periods is determined by the inequalities of
the type 1≤ 〈ci〉 ≤ N − 1. In addition to the differential forms of the second kind, there
are also the differential forms of thethird kind living onF(N). They can be easily obtained
from that of the second kind by relaxing the condition 1≤ 〈ci〉 ≤ N − 1 to 1≤ 〈ci〉 ≤ N,
Lang[21, p. 39]. The differential forms of the second kind are associated with the de Rham
cohomology classesH1

DR(F(N),C) [20, Lemma 1]. The differential forms of the first kind,
discussed in the book by Lang[21], by design do not have any poles while the differentials
of the second kind by design do not have residues. Only differentials of the third kind have
poles of order≤1 with non-vanishing residues and, hence, are physically interesting. We
shall be dealing mostly with differentials of the second kind converting them eventually
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into that of the third kind. The differentials of the third kind are linearly independent from
that of the first kind according to Lang[21].

Symmetrizing our result, Eq.(3.15), in the spirit of Veneziano ideas we obtain the 4-
particle Veneziano-like amplitude

A(s, t, u) = Ṽ (s, t) + Ṽ (s, u) + Ṽ (t, u), (3.16)

where, for example, upon analytical continuationV (s, t) is given by

Ṽ (s, t) =
(

1− exp
(

i
π

N
(−α(s))

))(
1 − exp

(
i
π

N
(−α(t))

))
B

(−α(s)

N
,
−α(t)

N

)
,

(3.17)

provided that we have identified〈ci〉 with α(i), etc. Naturally, in arriving at Eq.(3.17)we
have extended the differential forms from those of the second kind to those of the third. The
analytical properties of such designed Veneziano-like amplitudes are discussed in detail
below in subsections on multiparticle amplitudes

3.3. Connection with CFT through hypergeometric functions and the
Kac–Moody–Bloch–Bragg condition

In the light of just obtained results, we would like now to compare the hypergeometric
function, Eq.(2.6), with the beta function. Taking into account that[12]

(1 − zx)−a =
∞∑
n=0

(a, n)

n!
(zx)n,

Eq.(2.6)can be rewritten as follows:

F [a, b; c; x]=̇
∞∑
n=0

(a, n)

n!
xn
∫ 1

0
zb+n−1(1−z)c−b−1 dz =

∞∑
n=0

(a, n)

n!
xnB(b+n, c−b).

(3.18)

This result is to be compared with Eq.(3.14). To this purpose it is convenient to rewrite
Eq.(3.14)in the following more general form (up to a constant factor):

I(m, l)=̇
∫ 1

0
u〈c1〉−N+mN/N (1 − u)〈c2〉−N+lN/N du = B(a + m, b + l),

wherem, l = 0,±1,±2, . . .. It is clear that the phase factors entering into Eq.(3.15)will
either remain unchanged or will change sign upon such replacements. At the same time the
Veneziano condition, Eq.(3.11a), will change into

〈c0〉 + 〈c1〉 + 〈c2〉 = N + mN + lN + kN. (3.19)

This result can be explained physically with the help of some known facts from solid state
physics, e.g. read Ref.[29]. To this purpose let us consider the result of torus action on the
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formω, Eq.(3.9). If we demand this action to be torus action invariant (as it is explained in
Part 2), then we obtain∑

i

〈ci〉mi = 0 modN (3.20)

with mi being some integers. In particular, consider Eq.(3.20) for a special case of 4-
particle Veneziano amplitude. Then, in accordance with the discussion following Eq.(1.5),
the Veneziano condition can be rewritten as

〈c0〉m0 + 〈c1〉m1 + 〈c2〉m2 = 0 modN. (3.21)

But, in view of the Griffiths Corollary 2.11, the condition modN (or mod 2N) for the
Veneziano amplitudes should actually be replaced byN (or 2N). At the same time for the
hypergeometric functions in view of Eqs.(3.19) and (3.21), we should write instead

〈c0〉m0 + 〈c1〉m1 + 〈c2〉m2 = mN + lN + kN. (3.22)

Such a condition is known in solid state physics as the Bragg equation[29]. This equation
plays the central role in determining crystal structure by X-ray diffraction. Lattice periodicity
reflected in this equation affects kinematics of scattering processes for phonons and electrons
in crystals. Under these circumstances the concepts of particle energy and momentum lose
their usual meaning and should be amended to account for the lattice periodicity. The same
type of amendments should be made when comparing elementary scattering processes
in CFT against those in high energy physics. We shall call Eq.(3.22) theKac–Moody–
Bloch–Bragg(K–M–B–B) equation. In the group-theoretic language of Parts 2 and 3 the
difference between the high energy scattering processes and those in CFT is of the same
nature as the difference between the Coxeter–Weyl (pseudo)reflection groups and their
affine generalizations[30]. The same difference will be explained from the point of view
of symplectic and complex manifolds in Part 3.

3.4. Analytical properties of the multiparticle Veneziano and Veneziano-like
amplitudes (general considerations)

By analogy with the 4-particle case, the Fermat varietyFaff (N) in the affine form in the
multiparticle case is given by the following equation:

Faff (N) : YN
1 + · · · + YN

n+1 = 1, Yi = xi

x0
≡ zi. (3.23)

As before, use of parameterizationf : zi = t
1/N
i exp(±πi

N
) such that

∑
i ti = 1 allows us

to reduce the Fermat varietyFaff (N) to its deformation retract which isn + 1 simplex∆.
That is,f (Faff (N)) = ∆, where∆ :

∑
i ti = 1. The period integrals of the type given by

Eq. (3.3)with ω form defined by Eq.(3.9)after taking the Leray-type residue are reduced
to the following standard form (up to a constant):

I=̇
∫
∆

t
〈c1〉/N−1
1 · · · t〈cn+1〉/N−1

n+1 dt1 ∧ · · · ∧ dtn, (3.24)
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where, again, all phase factors have been suppressed temporarily. The important group-
theoretic meaning of the integrand in the above integral leading to recovery of the model
associated with such integral will be discussed at length in both Parts 2 and 3 of this work.

For n = 1 this integral coincides with that given by Eq.(3.14) (up to a constant) as
required. As part of preparations for calculation of this integral forn > 1 let us first have
another look at the casen = 1, where we have integrals of the type

I =
∫ 1

0
dxxa−1(1 − x)b−1 = B(a, b) = Γ (a)Γ (b)

Γ (a + b)
.

Alternatively, we can look at

Γ (a + b)I =
∫ ∞

0

∫ ∞

0
dx1 dx2 x

a−1
1 xb−1

2 exp(−x1 − x2). (3.25)

In the double integral on the r.h.s. let us consider change of variables:x1 = x̂1t, x2 = x̂2t

so thatx1 + x2 = t, provided that ˆx1 + x̂2 = 1. Takingt andx̂1 as new variables and taking
into account that the Jacobian of such transformation is one, the following result is obtained:

Γ (a + b)I =
∫ ∞

0
dt ta+b−1 exp(−t)

∫ 1

0
dx̂1 x̂

a−1
1 (1 − x̂1)b−1,

as expected. Going back to the original integral, Eq.(3.24), and introducing notations
ai = 〈ci〉

N
we obtain,

Γ

(
n+1∑
n=1

ai

)
I=̇
∫ ∞

0

dt

t
t

∑n+1
i=1

ai exp(−t)
∫
∆

t
a1−1
1 · · · tan+1−1

n+1 dt1 ∧ · · · ∧ dtn. (3.26)

By analogy with the casen = 1 we introduce new variables:si = tti. Naturally, we expect∑n+1
n=1 si = t sinceti variables are subject to the simplex constraint

∑n+1
i=1 ti = 1. With such

replacements we obtain

Γ

(
n+1∑
n=1

ai

)
I =

∫ ∞

0
· · ·
∫ ∞

0
exp

(
−

n+1∑
n=1

si

)
s
a1
1 · · · san+1

n+1
ds1

s1
∧ · · · ∧ dsn+1

sn+1

= Γ (a1) · · ·Γ (an+1).

Using this result, then-particle contribution to the Veneziano amplitude is given finally by
the following expression:

I=̇
∏n+1

i=1 Γ (ai)

Γ
(∑n+1

n=1 ai

) . (3.27)

Remark3.1.Eq.(3.27)can be found in the paper by Gross[20, p. 206], where it is suggested
(postulated) without derivation. Eq.(3.27)provides a complete explicit calculation of the
Dirichlet integral, Eq.(2.8), and as such, can be found, for example, in the book by Edwards
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[31] published in 1922. Calculations similar to ours also can be found in lecture notes by
Deligne[22]. We shall use some additional results from his notes below.

Our calculations are far from being complete however. To complete our calculations we
need to introduce the appropriate phase factors. In addition, we need to discuss carefully
the analytic continuation of just obtained expression for amplitude to negative values of
parametersai. Fortunately, the phase factors can be reinstalled in complete analogy with
the 4-particle case in view of the following straightforwardly verifiable identity:

B(x, y)B(x + y, z)B(x + y + z, u) · · ·B(x + y + · · · + t, l) = Γ (x)Γ (y) · · ·Γ (l)

Γ (x + y + · · · + l)
.

(3.28)

Because of this identity, the multiphase problem is reduced to that we have considered
already while looking at the 4-particle case and, hence, can be considered as solved. The
analytic continuation problem connected with the multiphase problem is much more delicate
and requires longer explanations.

The first difficulty we encounter is related to the constraints imposed on〈ci〉 factors
discussed in connection with the 4-particle case, e.g. restriction: 1≤ 〈ci〉 ≤ N − 1 (or 1≤
〈ci〉 ≤ N). To resolve this difficulty, we shall follow Deligne’s lecture notes[22]. We begin
with Eq.(3.9). The Veneziano condition, Eq.(3.11a), extended to the multivariable case is
written as

1 = 〈c〉 = 1

N

∑
i

〈ci〉, (3.29)

whereas Corollary 2.11 by Griffithsdoes notrequire this constraint to be imposed. To satisfy
this corollary, it is sufficient for us to require onlym = 〈c〉 for some integermto be specified
below. Clearly, such a requirement will change the total sum of exponents accordingly in the
numerator of Eq.(3.9). In particular, form = 2 we would reobtain Eq.(3.11b). It should be
noted at this point that Lemma 1 by Gross[20] although imposes such a constraint but was
actually provennot in connection with the period differential form, Eq.(3.9). This lemma
implicitly assumes that the Leray residuewas taken alreadyand deals with the differential
forms occurring as a result of such operation. To avoid guessing in the present case, we
need to initiate our analysis again starting from Eq.(3.9)and taking into account Corollary
2.11.

Following Deligne[22], let us discuss what happens if we replace〈c〉, Eq.(3.7), by〈−c〉.
In view of definition of the bracket sign〈·〉 we obtain

〈−c〉 = 1

N

∑
i

〈−ci〉 = 1

N

∑
i

〈−ci + N〉 = n + 2 − 〈c〉, (3.30)

where the factorn + 2 comes from the sum
∑

i 1 and〈c〉 is the same as in Eq.(3.7), provided
that 1≤ 〈ci〉 ≤ N. This result implies that the numbermdefined above can be only in the
range

n + 2

N
≤ m ≤ n + 2. (3.31)
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Remark 3.2. The Fermat varietyF(N), Eq.(3.6), is of theCalabi–Yautype if and only if
n + 2 = N [32, p. 531]. Clearly, this requirement is equivalent to the Veneziano condition,
Eq.(3.29), i.e.m = 1.

Remark 3.3. By not imposing this condition we can still get many physically rele-
vant and interesting results using Deligne’s lecture notes[22]. We have encountered
this already while arriving at Eq.(3.11b). Clearly, this equation is anyway reducible
to Eq. (3.11a)but earlier we obtained physically important phase factorε (instead of
ξ) by working with Eq. (3.11b). It should be obvious by now thatm is responsible
for change in phase factors: fromξ (for m = 1) to ε (for m = 2) to ε̂m = exp(i 2π

mN
)

(for m > 2). Physical significance of these phase factors is discussed in the next
subsection.

To extend these results we need to introduce several new notations now. LetVC be a
finite dimensional vector space overC. A C-rational Hodge structure of weightn onV is
a decompositionVC =⊕p+q=n V

p,q, such thatV̄ p,q = Vq,p. We extend the definition of
the torus action (to be given rigorously in Part 2) in order to accommodate the complex
conjugation: (t, Vp,q) = t−pt̄−qVp,q. Next, we define the filtration (the analog of the flag
decomposition, e.g. see Ref.[33] or our earlier work, Ref.[15], for rigorous definitions
and further details) viaFpV =⊕p′>p Vp′,q′

so that· · · ⊃ FpV ⊃ Fp+1V ⊃ · · · is a de-

creasing filtration onV. The differential form, Eq.(3.9), belongs to the spaceΩn+1
m (F) of

differential forms such thatω = p(z)
q(z)m ω0, wherep(z) is a homogenous polynomial of degree

mdeg(q) − (n + 2). Such differential forms have a pole of order≤ m. As in the standard
complex analysis, one can define the multidimensional analogue of the residue via map
R(ω) : Ωn+1

m (F ) → Hn(F,C) via

〈σ,R(ω)〉 = 1

2πi

∫
σ

ω, σ ∈ Hn(F,C). (3.32)

Deligne proves that:

(a) Hn(F,C) =⊕c̄ 
=0 H
n(F,C)c̄, where

(b) Hn(F,C)c̄ ⊂ F 〈c〉−1Hn(F,C), while the complex conjugate ofHn(F,C)c̄ is given by
Hn(F,C)−c̄ ⊂ Fn−〈c〉+1Hn(F,C).

Thus, by construction, Hn(F,C)c̄ is of bidegree (p, q) with p = 〈c〉 − 1, q = n − p,
while its complex conjugateHn(F,C)−c̄ is of bidegree (q, p). Obtained cohomologies are
non-trivial and of Hodge-type only when〈c〉 
= 1. Finally, the procedure of extracting the
residue from the integral in Eq.(3.32)with ω containing a pole of orderm is described in
the book by Hwa and Teplitz[28] and in spirit is essentially the same as in the standard
one-variable complex analysis. Therefore, after all, we end up again with the differential
form ω, Eq. (3.9), with 〈c〉 = 1. However, this form will be used with the phase factors
ε̂m instead ofξ. Physical consequences of this replacement are considered in the next
subsection.
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3.5. Analytical properties of the Veneziano-like amplitudes (ramifications)

Earlier obtained results of this section allow us to write the following 4-particle
Veneziano-like amplitude,

A(s, t, u) = Ṽ (s, t) + Ṽ (s, u) + Ṽ (t, u),

where, for instance,

Ṽ (s, t) =
(

1 − exp
(

i
π

N
(−α(s))

)(
1 − exp

(
i
π

N
(−α(t))

))
B

(
−α(s)

N
,−α(t)

N

))
.

(3.33)

Although this result was obtained by the same analytic continuation as in the case of
the Veneziano amplitude, the resulting analytical properties of such Veneziano-like am-
plitude are markedly different. In this section we would like to discuss these important
differences.

We begin by noticing that, in view of Eq.(3.11b), the Veneziano condition in its sim-
plest form:a + b + c = 1, upon analytic continuation, leads again to the requirement:
α(s) + α(t) + α(u) = −1, if we identify, for example,〈c1〉

N
= a1 with −α(s), etc. This naive

identification leads to some difficulties, however. Indeed, since physically we are interested
in the poles and zeros of gamma functions, we expect our parametersa, b andc to be in-
tegers. This is possible only if the absolute values of〈c1〉, 〈c2〉 and〈c3〉 are greater than
or equal toN. By allowing these parameters to become greater thanN we would formally
violate the requirements of Corollary 2.11 by Griffiths, e.g. see Eq.(3.9)and the discussion
around it. Fortunately, the occurring difficulty can by resolved. For instance, one can postu-
late Eqs.(3.16) and (3.33)asdefining relationsfor the Veneziano-like amplitudes as it was
done historically by Veneziano for what has become known as the Veneziano amplitudes.
In this case one is confronted with the problem of finding some physical model reproducing
such amplitudes. To facilitate search for such a model, it is reasonable to impose the same
constraints as for the standard Veneziano amplitudes. Clearly, if we want to use earlier
obtained results, we must, in addition to these constraints, to impose the constraint coming
from Corollary 2.11. This corollary formally forbids us from consideration of ratios〈ci〉

N
,

whose absolute value is greater than 1 as we have discussed in the previous subsection. After
a short while of thinking, this complication creates no additional problems, however. This
can be seen already in the example of Eq.(1.14)for sinπx. Indeed, consider the function

F (x) = 1

sinπx
.

It will have the first order poles forx = 0,±1,±2, . . .. If we formally define the bracket
operator〈· · ·〉 by analogy with that defined before Eq.(3.7), e.g. 0< 〈x〉 ≤ 1∀x, then to
reproduce the poles ofF (x) it is sufficient to write

F (x) = 1

sinπx
= 1

1 − 〈x〉 . (3.34)
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Clearly, the above result can be read as well from right to left, i.e. removal of brackets
is equivalent to unwrappingS1 into R1, i.e. to switching from a given space, e.g.S1, to
its universal covering space, e.g.R1. By looking at Eq.(1.15)for expression ofΓ (z) and
comparing it with Eq.(1.14)we notice that all singularities ofΓ (z) are exactly the same
as those forF (x). Hence, the same unwrapping is applicable for this case as well. These
observations lead us to the following set of prescriptions:

(a) use Eq.(3.15)in Eq.(3.16)in order to obtain the full Veneziano-like amplitude,
(b) remove brackets,
(c) perform analytic continuation to negative values ofci’s,
(d) identify− ci

N
with −α(i) (i = s, t or u).

After this, let, for instance,α(s) = a + bs, where botha andb are some positive (or
better, non-negative) constants. Then, the tachyonic pole:α(s) = 0, n = 0 (e.g. seeEqs.
(1.17)–(1.19)) is killed by the corresponding phase factor in Eq.(3.33). The mass spectrum
is determined by: (a) the actual numerical values of the constantsa andb, (b) by the phase
factors and (c) by the values of parameterN (even or odd).

For instance, the condition, Eq.(3.11b), leads to the requirement that the particle with
masses satisfying equationα(s) = 2l, l = 1,2, . . . cannot be observed since the emerging
pole singularities are killed by zeroes coming from the phase factor. In the case of 4-
particle amplitude the inequality, Eq.(3.31), should be used withn = 1 thus leading to
the constraints:N ≥ 3 and 1≤ m ≤ 3. If we choosem = 3 we obtain similar requirement
forbidding particles with masses coming from the equationα(s) = 3l, l = 1,2, . . . (e.g. see
the Remark 3.3).

Such limitations are not too severe, however. Indeed, let us consider for a moment the
existing bosonic string parameters associated with the Veneziano amplitude. For the open
string the known convention is:α(s) = 1 + 1

2s. The tachyon state is determined therefore
by the condition:α(s) = 0 thus producings = −2 = M2. If now 1+ 1

2s = l, we obtain
s = 2(l − 1), l = 1,3,5, . . . (form = 2) orl = 1,2,4,5, . . . (form = 3). Clearly, the com-
bined use of these results produce the mass spectrum for the open bosonic string (without
tachyons). If we want the graviton to be present in the spectrum we have to adjust the values
of constantsa andb. For instance, it is known[2] that for the closed string the tachyon
occurs ats = −8 = M2. This result can be obtained if we choose eitherα(s) = 2 + 1

4s or
α(s) = 1 + 1

8s. To decide which of these two expressions provides better fit to the experi-
mental data we recall that the massless graviton should have spin equal to 2. If we want the
graviton to be present in the spectrum we must select the first option. This is so because of
the following arguments. First, we have to take into account that for largesand fixedt the
amplitudeV (s, t) can be approximated by[2, p. 10],

V (s, t) � Γ (−α(t))(−α(s))α(t), (3.35)

while the Regge theory predicts[2, pp. 3 and 4]that

VJ (s, t) = −g2(−s)J

t − M2
J

� −g2(−α(s))J

α(t) − J
(3.36)
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for the particle with spinJ. This leaves us with the first option. Second, by selecting this
option our task is not complete, since thus far we have ignored the actual value of the Fermat
parameterN. Such ignorance causes emergence of the fictitious tachyon coming from the
equation 2+ 1

4s = l for l = 1. This difficulty is easily removable if we take into account that
the “Shapiro–Virasoro” condition, Eq.(3.11b), is reducible to the “Veneziano condition,
Eq. (3.11a), when all〈ci〉 in Eq. (3.11b)are even. At the same time, ifN in Eq. (3.11a)is
even, it can be brought to the form of Eq.(3.11b). Hence, in making identification of− ci

N
with −α(i) we have to consider two options: (a)N is odd, thenci

N
= α(i) and (b)N is even,

N = 2N̂, thenci
N̂

= α(i). Then, proceeding by analogy with arguments for the open bosonic
string spectrum we reobtain the spectrum of the closed bosonic string”.

The fictitious tachyon is removed from the spectrum if we choose the option (b). Clearly,
after this, in complete analogy with the “open string” case, we reobtain the tachyon-free
spectrum of the “closed” bosonic string.

To complete our investigation of the Veneziano-like amplitudes we still would like to
have some discussion related to Eqs.(3.35) and (3.36)). To this purpose, using integral
representation ofΓ given by

Γ (x) =
∫ ∞

0

dt

t
tx exp(−t)

and assuming thatx is large and positive, the leading term of the saddle point approximation
(to Γ ) is readily obtained, and is given by

Γ (x) = Axx exp(−x),

whereA is some constant. Applying (with some caution) this result to

V (s, t) = Γ (−α(s))Γ (−α(t))

Γ (−α(s) − α(t))
≡ B(−α(s),−α(t)),

we obtain Eq.(3.35).
Although such arguments formally explain the origin of the Regge asymptotic law,

Eq. (3.35), they do not illuminate the combinatorial origin of this result essential for its
generalization. To correct this deficiency we would like to use again Eq.(1.20). In the
case whenz0 = · · · = zn = 1 the inner sum in the right-hand side yields the total number
of monomials of the typezk0

0 · · · zknn with k0 + · · · + kk = n. The total number of such
monomials is given by Eq.(1.21)which allows us to write the generating functionP(k, t),
Eq. (1.22), and accordingly, the Veneziano amplitude, Eq.(1.23). The functionp(k, n)
defined in Eqs.(1.21) and (1.25)happen to be the non-negative integer. InSection 1we
have mentioned already that it arises naturally as the dimension of the quantum Hilbert space
associated (through the coadjoint orbit method) with the symplectic manifold of dimension
2k constructed by “inflating”∆k. We would like to use these observations now to complete
our discussion of the Regge-like result, Eq.(3.35). To this purpose using Eq.(1.14)and
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assuming thatα(t) → k∗ we can approximate the amplitudeV (s, t) by

V (s, t) � − pα(s)(k∗)

α(t) − k∗ � −pα(s)(α(t))

α(t) − k∗ . (3.37)

For largeα(s)7 by combining Eqs.(1.25) and (3.37)we obtain

V (s, t) � −1

α(t) − k∗
α(s)k

∗

k∗!
. (3.38)

In view of the footnote remark, and taking into account thatk∗ � α(t), this result coincides
with Eq.(3.35)as required. In addition, however, for largek’s it can be further rewritten as

V (s, t) � −1

α(t) − k∗

(
α(s)

k∗

)k∗

� −1

α(t) − k∗

(
α(s)

α(t)

)α(t)

(3.39)

in accordance with Eq.(3.36). Obtained result is manifestly symmetric with respect to
exchanges � t in accordance with the earlier mentioned requirementV (s, t) = V (t, s).
Moreover, it explicitly demonstrates that the angular momentum of the graviton is indeed
equal to 2 as required.
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